ARM DTS解析

ARM 221瀏覽

1.    ARM Device Tree起源

Linus Torvalds在2011年3月17日的ARM Linux郵件列表宣稱“this whole ARM thing is a f*cking pain in the ass”,引發ARM
Linux社區的地震,隨后ARM社區進行了一系列的


重大修正。在過去的ARM Linux中,arch/arm/plat-xxx和arch/arm/mach-xxx中充斥著大量的垃圾代碼,相當多數的代碼只是在描述板級細節,而這些板級細節對于內核來講,

不過是垃圾,如板上的platform設備、resource、i2c_board_info、spi_board_info以及各種硬件的platform_data。讀者有興趣可以統計下常見的s3c2410、s3c6410等板級目錄,代碼量在數萬行。

社區必須改變這種局面,于是PowerPC等其他體系架構下已經使用的Flattened Device Tree(FDT)進入ARM社區的視野。Device Tree是一種描述硬件的數據結構,它起源

于 OpenFirmware (OF)。在Linux 2.6中,ARM架構的板極硬件細節過多地被硬編碼在arch/arm/plat-xxx和arch/arm/mach-xxx,采用Device
Tree后,許多硬件的細節可以直接透過它傳遞給Linux,而不再需要在kernel中進行大量的冗余編碼。


Device Tree由一系列被命名的結點(node)和屬性(property)組成,而結點本身可包含子結點。所謂屬性,其實就是成對出現的name和value。在Device Tree中,可描述

的信息包括(原先這些信息大多被hard code到kernel中):



    CPU的數量和類別

    內存基地址和大小

    總線和橋

    外設連接

    中斷控制器和中斷使用情況

    GPIO控制器和GPIO使用情況

    Clock控制器和Clock使用情況



它基本上就是畫一棵電路板上CPU、總線、設備組成的樹,Bootloader會將這棵樹傳遞給內核,然后內核可以識別這棵樹,并根據它展開出Linux內核中的platform_device、i2c_client、spi_device等設備,而這些設備用到的內存、IRQ等資源,也被傳遞給了內核,內核會將這些資源綁定給展開的相應的設備。

2.    Device Tree組成和結構

整個Device Tree牽涉面比較廣,即增加了新的用于描述設備硬件信息的文本格式,又增加了編譯這一文本的工具,同時Bootloader也需要支持將編譯后的Device Tree傳遞給Linux內核。

DTS (device tree source)

.dts文件是一種ASCII 文本格式的Device Tree描述,此文本格式非常人性化,適合人類的閱讀習慣。基本上,在ARM Linux在,一個.dts文件對應一個ARM的machine,一般放置在內核的arch/arm/boot/dts/目錄。由于一個SoC可能對應多個machine(一個SoC可以對應多個產品和電路板),勢必這些.dts文件需包含許多共同的部分,Linux內核為了簡化,把SoC公用的部分或者多個machine共同的部分一般提煉為.dtsi,類似于C語言的頭文件。其他的machine對應的.dts就include這個.dtsi。譬如,對于VEXPRESS而言,vexpress-v2m.dtsi就被vexpress-v2p-ca9.dts所引用,
vexpress-v2p-ca9.dts有如下一行:


/include/ "vexpress-v2m.dtsi"

當然,和C語言的頭文件類似,.dtsi也可以include其他的.dtsi,譬如幾乎所有的ARM SoC的.dtsi都引用了skeleton.dtsi。

.dts(或者其include的.dtsi)基本元素即為前文所述的結點和屬性:

[plain] view plaincopy



    / {  

        node1 {  

            a-string-property = "A string";  

            a-string-list-property = "first string", "second string";  

            a-byte-data-property = [0x01 0x23 0x34 0x56];  

            child-node1 {  

                first-child-property;  

                second-child-property = <1>;  

                a-string-property = "Hello, world";  

            };  

            child-node2 {  

            };  

        };  

        node2 {  

            an-empty-property;  

            a-cell-property = <1 2 3 4>; /* each number (cell) is a uint32 */  

            child-node1 {  

            };  

        };  

    };  



上述.dts文件并沒有什么真實的用途,但它基本表征了一個Device Tree源文件的結構:

1個root結點"/";

root結點下面含一系列子結點,本例中為"node1" 和 "node2";

結點"node1"下又含有一系列子結點,本例中為"child-node1" 和 "child-node2";

各結點都有一系列屬性。這些屬性可能為空,如" an-empty-property";可能為字符串,如"a-string-property";可能為字符串數組,如"a-string-list-property";可能為Cells(由u32整數組成),如"second-child-property",可能為二進制數,如"a-byte-data-property"。

下面以一個最簡單的machine為例來看如何寫一個.dts文件。假設此machine的配置如下:

1個雙核ARM Cortex-A9 32位處理器;

ARM的local bus上的內存映射區域分布了2個串口(分別位于0x101F1000 和 0x101F2000)、GPIO控制器(位于0x101F3000)、SPI控制器(位于0x10170000)、中斷控制器(位于0x10140000)和一個external
bus橋;


External bus橋上又連接了SMC SMC91111 Ethernet(位于0x10100000)、I2C控制器(位于0x10160000)、64MB NOR Flash(位于0x30000000);

External bus橋上連接的I2C控制器所對應的I2C總線上又連接了Maxim DS1338實時鐘(I2C地址為0x58)。

其對應的.dts文件為:

[plain] view plaincopy



    / {  

        compatible = "acme,coyotes-revenge";  

        #address-cells = <1>;  

        #size-cells = <1>;  

        interrupt-parent = <&intc>;  

      

        cpus {  

            #address-cells = <1>;  

            #size-cells = <0>;  

            [email protected] {  

                compatible = "arm,cortex-a9";  

                reg = <0>;  

            };  

            [email protected] {  

                compatible = "arm,cortex-a9";  

                reg = <1>;  

            };  

        };  

      

        [email protected] {  

            compatible = "arm,pl011";  

            reg = <0x101f0000 0x1000 >;  

            interrupts = < 1 0 >;  

        };  

      

        [email protected] {  

            compatible = "arm,pl011";  

            reg = <0x101f2000 0x1000 >;  

            interrupts = < 2 0 >;  

        };  

      

        [email protected] {  

            compatible = "arm,pl061";  

            reg = <0x101f3000 0x1000  

                   0x101f4000 0x0010>;  

            interrupts = < 3 0 >;  

        };  

      

        intc: [email protected] {  

            compatible = "arm,pl190";  

            reg = <0x10140000 0x1000 >;  

            interrupt-controller;  

            #interrupt-cells = <2>;  

        };  

      

        [email protected] {  

            compatible = "arm,pl022";  

            reg = <0x10115000 0x1000 >;  

            interrupts = < 4 0 >;  

        };  

      

        external-bus {  

            #address-cells = <2>  

            #size-cells = <1>;  

            ranges = <0 0  0x10100000   0x10000     // Chipselect 1, Ethernet  

                      1 0  0x10160000   0x10000     // Chipselect 2, i2c controller  

                      2 0  0x30000000   0x1000000>; // Chipselect 3, NOR Flash  

      

            [email protected],0 {  

                compatible = "smc,smc91c111";  

                reg = <0 0 0x1000>;  

                interrupts = < 5 2 >;  

            };  

      

            [email protected],0 {  

                compatible = "acme,a1234-i2c-bus";  

                #address-cells = <1>;  

                #size-cells = <0>;  

                reg = <1 0 0x1000>;  

                interrupts = < 6 2 >;  

                [email protected] {  

                    compatible = "maxim,ds1338";  

                    reg = <58>;  

                    interrupts = < 7 3 >;  

                };  

            };  

      

            [email protected],0 {  

                compatible = "samsung,k8f1315ebm", "cfi-flash";  

                reg = <2 0 0x4000000>;  

            };  

        };  

    };  



上述.dts文件中,root結點"/"的compatible 屬性compatible = "acme,coyotes-revenge";定義了系統的名稱,它的組織形式為:<manufacturer>,<model>。Linux內核透過root結點"/"的compatible
屬性即可判斷它啟動的是什么machine。


在.dts文件的每個設備,都有一個compatible 屬性,compatible屬性用戶驅動和設備的綁定。compatible 屬性是一個字符串的列表,列表中的第一個字符串表征了結點代表的確切設備,形式為"<manufacturer>,<model>",其后的字符串表征可兼容的其他設備。可以說前面的是特指,后面的則涵蓋更廣的范圍。如在arch/arm/boot/dts/vexpress-v2m.dtsi中的Flash結點:

[plain] view plaincopy



    [email protected],00000000 {  

         compatible = "arm,vexpress-flash", "cfi-flash";  

         reg = <0 0x00000000 0x04000000>,  

         <1 0x00000000 0x04000000>;  

         bank-width = <4>;  

     };  



compatible屬性的第2個字符串"cfi-flash"明顯比第1個字符串"arm,vexpress-flash"涵蓋的范圍更廣。

再比如,Freescale MPC8349 SoC含一個串口設備,它實現了國家半導體(National Semiconductor)的ns16550 寄存器接口。則MPC8349串口設備的compatible屬性為compatible
= "fsl,mpc8349-uart", "ns16550"。其中,fsl,mpc8349-uart指代了確切的設備, ns16550代表該設備與National Semiconductor 的16550 UART保持了寄存器兼容。


接下來root結點"/"的cpus子結點下面又包含2個cpu子結點,描述了此machine上的2個CPU,并且二者的compatible 屬性為"arm,cortex-a9"。

注意cpus和cpus的2個cpu子結點的命名,它們遵循的組織形式為:<name>[@<unit-address>],<>中的內容是必選項,[]中的則為可選項。name是一個ASCII字符串,用于描述結點對應的設備類型,如3com
Ethernet適配器對應的結點name宜為ethernet,而不是3com509。如果一個結點描述的設備有地址,則應該給出@unit-address。多個相同類型設備結點的name可以一樣,只要unit-address不同即可,如本例中含有[email protected][email protected]以及[email protected][email protected]這樣的同名結點。設備的unit-address地址也經常在其對應結點的reg屬性中給出。ePAPR標準給出了結點命名的規范。


可尋址的設備使用如下信息來在Device Tree中編碼地址信息:



        reg

        #address-cells

        #size-cells



其中reg的組織形式為reg = <address1 length1 [address2 length2] [address3 length3] ... >,其中的每一組address
length表明了設備使用的一個地址范圍。address為1個或多個32位的整型(即cell),而length則為cell的列表或者為空(若#size-cells = 0)。address 和 length 字段是可變長的,父結點的#address-cells和#size-cells分別決定了子結點的reg屬性的address和length字段的長度。在本例中,root結點的#address-cells = <1>;和#size-cells = <1>;決定了serial、gpio、spi等結點的address和length字段的長度分別為1。cpus
結點的#address-cells = <1>;和#size-cells = <0>;決定了2個cpu子結點的address為1,而length為空,于是形成了2個cpu的reg = <0>;和reg = <1>;。external-bus結點的#address-cells = <2>和#size-cells = <1>;決定了其下的ethernet、i2c、flash的reg字段形如reg = <0 0 0x1000>;、reg = <1 0 0x1000>;和reg = <2 0 0x4000000>;。其中,address字段長度為0,開始的第一個cell(0、1、2)是對應的片選,第2個cell(0,0,0)是相對該片選的基地址,第3個cell(0x1000、0x1000、0x4000000)為length。特別要留意的是i2c結點中定義的
#address-cells = <1>;和#size-cells = <0>;又作用到了I2C總線上連接的RTC,它的address字段為0x58,是設備的I2C地址。


root結點的子結點描述的是CPU的視圖,因此root子結點的address區域就直接位于CPU的memory區域。但是,經過總線橋后的address往往需要經過轉換才能對應的CPU的memory映射。external-bus的ranges屬性定義了經過external-bus橋后的地址范圍如何映射到CPU的memory區域。

[plain] view plaincopy



    ranges = <0 0  0x10100000   0x10000     // Chipselect 1, Ethernet  

              1 0  0x10160000   0x10000     // Chipselect 2, i2c controller  

              2 0  0x30000000   0x1000000>; // Chipselect 3, NOR Flash  



ranges是地址轉換表,其中的每個項目是一個子地址、父地址以及在子地址空間的大小的映射。映射表中的子地址、父地址分別采用子地址空間的#address-cells和父地址空間的#address-cells大小。對于本例而言,子地址空間的#address-cells為2,父地址空間的#address-cells值為1,因此0
0  0x10100000   0x10000的前2個cell為external-bus后片選0上偏移0,第3個cell表示external-bus后片選0上偏移0的地址空間被映射到CPU的0x10100000位置,第4個cell表示映射的大小為0x10000。ranges的后面2個項目的含義可以類推。


Device Tree中還可以中斷連接信息,對于中斷控制器而言,它提供如下屬性:

interrupt-controller – 這個屬性為空,中斷控制器應該加上此屬性表明自己的身份;

#interrupt-cells – 與#address-cells 和 #size-cells相似,它表明連接此中斷控制器的設備的interrupts屬性的cell大小。

在整個Device Tree中,與中斷相關的屬性還包括:

interrupt-parent – 設備結點透過它來指定它所依附的中斷控制器的phandle,當結點沒有指定interrupt-parent 時,則從父級結點繼承。對于本例而言,root結點指定了interrupt-parent
= <&intc>;其對應于intc: [email protected],而root結點的子結點并未指定interrupt-parent,因此它們都繼承了intc,即位于0x10140000的中斷控制器。


interrupts – 用到了中斷的設備結點透過它指定中斷號、觸發方法等,具體這個屬性含有多少個cell,由它依附的中斷控制器結點的#interrupt-cells屬性決定。而具體每個cell又是什么含義,一般由驅動的實現決定,而且也會在Device
Tree的binding文檔中說明。譬如,對于ARM GIC中斷控制器而言,#interrupt-cells為3,它3個cell的具體含義Documentation/devicetree/bindings/arm/gic.txt就有如下文字說明:


[plain] view plaincopy



    01   The 1st cell is the interrupt type; 0 for SPI interrupts, 1 for PPI  

    02   interrupts.  

    03  

    04   The 2nd cell contains the interrupt number for the interrupt type.  

    05   SPI interrupts are in the range [0-987].  PPI interrupts are in the  

    06   range [0-15].  

    07  

    08   The 3rd cell is the flags, encoded as follows:  

    09         bits[3:0] trigger type and level flags.  

    10                 1 = low-to-high edge triggered  

    11                 2 = high-to-low edge triggered  

    12                 4 = active high level-sensitive  

    13                 8 = active low level-sensitive  

    14         bits[15:8] PPI interrupt cpu mask.  Each bit corresponds to each of  

    15         the 8 possible cpus attached to the GIC.  A bit set to '1' indicated  

    16         the interrupt is wired to that CPU.  Only valid for PPI interrupts.  



另外,值得注意的是,一個設備還可能用到多個中斷號。對于ARM GIC而言,若某設備使用了SPI的168、169號2個中斷,而言都是高電平觸發,則該設備結點的interrupts屬性可定義為:interrupts
= <0 168 4>, <0 169 4>;


除了中斷以外,在ARM Linux中clock、GPIO、pinmux都可以透過.dts中的結點和屬性進行描述。

DTC (device tree compiler)

將.dts編譯為.dtb的工具。DTC的源代碼位于內核的scripts/dtc目錄,在Linux內核使能了Device Tree的情況下,編譯內核的時候主機工具dtc會被編譯出來,對應scripts/dtc/Makefile中的“hostprogs-y
:= dtc”這一hostprogs編譯target。


在Linux內核的arch/arm/boot/dts/Makefile中,描述了當某種SoC被選中后,哪些.dtb文件會被編譯出來,如與VEXPRESS對應的.dtb包括:

[plain] view plaincopy



    dtb-$(CONFIG_ARCH_VEXPRESS) += vexpress-v2p-ca5s.dtb  

            vexpress-v2p-ca9.dtb  

            vexpress-v2p-ca15-tc1.dtb  

            vexpress-v2p-ca15_a7.dtb  

            xenvm-4.2.dtb  



在Linux下,我們可以單獨編譯Device Tree文件。當我們在Linux內核下運行make dtbs時,若我們之前選擇了ARCH_VEXPRESS,上述.dtb都會由對應的.dts編譯出來。因為arch/arm/Makefile中含有一個dtbs編譯target項目。

Device Tree Blob (.dtb)

.dtb是.dts被DTC編譯后的二進制格式的Device Tree描述,可由Linux內核解析。通常在我們為電路板制作NAND、SD啟動image時,會為.dtb文件單獨留下一個很小的區域以存放之,之后bootloader在引導kernel的過程中,會先讀取該.dtb到內存。

Binding

對于Device Tree中的結點和屬性具體是如何來描述設備的硬件細節的,一般需要文檔來進行講解,文檔的后綴名一般為.txt。這些文檔位于內核的Documentation/devicetree/bindings目錄,其下又分為很多子目錄。

Bootloader

Uboot mainline 從 v1.1.3開始支持Device Tree,其對ARM的支持則是和ARM內核支持Device Tree同期完成。

為了使能Device Tree,需要編譯Uboot的時候在config文件中加入

#define CONFIG_OF_LIBFDT

在Uboot中,可以從NAND、SD或者TFTP等任意介質將.dtb讀入內存,假設.dtb放入的內存地址為0x71000000,之后可在Uboot運行命令fdt addr命令設置.dtb的地址,如:

U-Boot> fdt addr 0x71000000

fdt的其他命令就變地可以使用,如fdt resize、fdt print等。

對于ARM來講,可以透過bootz kernel_addr initrd_address dtb_address的命令來啟動內核,即dtb_address作為bootz或者bootm的最后一次參數,第一個參數為內核映像的地址,第二個參數為initrd的地址,若不存在initrd,可以用
-代替。


3.    Device Tree引發的BSP和驅動變更

有了Device Tree后,大量的板級信息都不再需要,譬如過去經常在arch/arm/plat-xxx和arch/arm/mach-xxx實施的如下事情:

1.    注冊platform_device,綁定resource,即內存、IRQ等板級信息。



透過Device Tree后,形如

[cpp] view plaincopy



    90 static struct resource xxx_resources[] = {  

    91         [0] = {  

    92                 .start  = …,  

    93                 .end    = …,  

    94                 .flags  = IORESOURCE_MEM,  

    95         },  

    96         [1] = {  

    97                 .start  = …,  

    98                 .end    = …,  

    99                 .flags  = IORESOURCE_IRQ,  

    100         },  

    101 };  

    102  

    103 static struct platform_device xxx_device = {  

    104         .name           = "xxx",  

    105         .id             = -1,  

    106         .dev            = {  

    107                                 .platform_data          = &xxx_data,  

    108         },  

    109         .resource       = xxx_resources,  

    110         .num_resources  = ARRAY_SIZE(xxx_resources),  

    111 };  



之類的platform_device代碼都不再需要,其中platform_device會由kernel自動展開。而這些resource實際來源于.dts中設備結點的reg、interrupts屬性。典型地,大多數總線都與“simple_bus”兼容,而在SoC對應的machine的.init_machine成員函數中,調用of_platform_bus_probe(NULL,
xxx_of_bus_ids, NULL);即可自動展開所有的platform_device。譬如,假設我們有個XXX SoC,則可在arch/arm/mach-xxx/的板文件中透過如下方式展開.dts中的設備結點對應的platform_device:


[cpp] view plaincopy



    18 static struct of_device_id xxx_of_bus_ids[] __initdata = {  

    19         { .compatible = "simple-bus", },  

    20         {},  

    21 };  

    22  

    23 void __init xxx_mach_init(void)  

    24 {  

    25         of_platform_bus_probe(NULL, xxx_of_bus_ids, NULL);  

    26 }  

    32  

    33 #ifdef CONFIG_ARCH_XXX  

    38  

    39 DT_MACHINE_START(XXX_DT, "Generic XXX (Flattened Device Tree)")  

    41         …  

    45         .init_machine   = xxx_mach_init,  

    46         …  

    49 MACHINE_END  

    50 #endif  



2.    注冊i2c_board_info,指定IRQ等板級信息。



形如

[cpp] view plaincopy



    145 static struct i2c_board_info __initdata afeb9260_i2c_devices[] = {  

    146         {  

    147                 I2C_BOARD_INFO("tlv320aic23", 0x1a),  

    148         }, {  

    149                 I2C_BOARD_INFO("fm3130", 0x68),  

    150         }, {  

    151                 I2C_BOARD_INFO("24c64", 0x50),  

    152         },  

    153 };  



之類的i2c_board_info代碼,目前不再需要出現,現在只需要把tlv320aic23、fm3130、24c64這些設備結點填充作為相應的I2C controller結點的子結點即可,類似于前面的

[cpp] view plaincopy



    [email protected],0 {  

          compatible = "acme,a1234-i2c-bus";  

          …  

          [email protected] {  

              compatible = "maxim,ds1338";  

              reg = <58>;  

              interrupts = < 7 3 >;  

          };  

      };  



Device Tree中的I2C client會透過I2C host驅動的probe()函數中調用of_i2c_register_devices(&i2c_dev->adapter);被自動展開。



3.    注冊spi_board_info,指定IRQ等板級信息。



形如

[cpp] view plaincopy



    79 static struct spi_board_info afeb9260_spi_devices[] = {  

    80         {       /* DataFlash chip */  

    81                 .modalias       = "mtd_dataflash",  

    82                 .chip_select    = 1,  

    83                 .max_speed_hz   = 15 * 1000 * 1000,  

    84                 .bus_num        = 0,  

    85         },  

    86 };  



之類的spi_board_info代碼,目前不再需要出現,與I2C類似,現在只需要把mtd_dataflash之類的結點,作為SPI控制器的子結點即可,SPI host驅動的probe函數透過spi_register_master()注冊master的時候,會自動展開依附于它的slave。



4.    多個針對不同電路板的machine,以及相關的callback。



過去,ARM Linux針對不同的電路板會建立由MACHINE_START和MACHINE_END包圍起來的針對這個machine的一系列callback,譬如:

[cpp] view plaincopy



    373 MACHINE_START(VEXPRESS, "ARM-Versatile Express")  

    374         .atag_offset    = 0x100,  

    375         .smp            = smp_ops(vexpress_smp_ops),  

    376         .map_io         = v2m_map_io,  

    377         .init_early     = v2m_init_early,  

    378         .init_irq       = v2m_init_irq,  

    379         .timer          = &v2m_timer,  

    380         .handle_irq     = gic_handle_irq,  

    381         .init_machine   = v2m_init,  

    382         .restart        = vexpress_restart,  

    383 MACHINE_END  



這些不同的machine會有不同的MACHINE ID,Uboot在啟動Linux內核時會將MACHINE ID存放在r1寄存器,Linux啟動時會匹配Bootloader傳遞的MACHINE
ID和MACHINE_START聲明的MACHINE ID,然后執行相應machine的一系列初始化函數。




引入Device Tree之后,MACHINE_START變更為DT_MACHINE_START,其中含有一個.dt_compat成員,用于表明相關的machine與.dts中root結點的compatible屬性兼容關系。如果Bootloader傳遞給內核的Device
Tree中root結點的compatible屬性出現在某machine的.dt_compat表中,相關的machine就與對應的Device Tree匹配,從而引發這一machine的一系列初始化函數被執行。


[cpp] view plaincopy



    489 static const char * const v2m_dt_match[] __initconst = {  

    490         "arm,vexpress",  

    491         "xen,xenvm",  

    492         NULL,  

    493 };  

    495 DT_MACHINE_START(VEXPRESS_DT, "ARM-Versatile Express")  

    496         .dt_compat      = v2m_dt_match,  

    497         .smp            = smp_ops(vexpress_smp_ops),  

    498         .map_io         = v2m_dt_map_io,  

    499         .init_early     = v2m_dt_init_early,  

    500         .init_irq       = v2m_dt_init_irq,  

    501         .timer          = &v2m_dt_timer,  

    502         .init_machine   = v2m_dt_init,  

    503         .handle_irq     = gic_handle_irq,  

    504         .restart        = vexpress_restart,  

    505 MACHINE_END  



Linux倡導針對多個SoC、多個電路板的通用DT machine,即一個DT machine的.dt_compat表含多個電路板.dts文件的root結點compatible屬性字符串。之后,如果的電路板的初始化序列不一樣,可以透過int
of_machine_is_compatible(const char *compat) API判斷具體的電路板是什么。




    譬如arch/arm/mach-exynos/mach-exynos5-dt.c的EXYNOS5_DT machine同時兼容"samsung,exynos5250"和"samsung,exynos5440":

[cpp] view plaincopy



    158 static char const *exynos5_dt_compat[] __initdata = {  

    159         "samsung,exynos5250",  

    160         "samsung,exynos5440",  

    161         NULL  

    162 };  

    163  

    177 DT_MACHINE_START(EXYNOS5_DT, "SAMSUNG EXYNOS5 (Flattened Device Tree)")  

    178         /* Maintainer: Kukjin Kim <[email protected]> */  

    179         .init_irq       = exynos5_init_irq,  

    180         .smp            = smp_ops(exynos_smp_ops),  

    181         .map_io         = exynos5_dt_map_io,  

    182         .handle_irq     = gic_handle_irq,  

    183         .init_machine   = exynos5_dt_machine_init,  

    184         .init_late      = exynos_init_late,  

    185         .timer          = &exynos4_timer,  

    186         .dt_compat      = exynos5_dt_compat,  

    187         .restart        = exynos5_restart,  

    188         .reserve        = exynos5_reserve,  

    189 MACHINE_END  



     它的.init_machine成員函數就針對不同的machine進行了不同的分支處理:

[cpp] view plaincopy



    126 static void __init exynos5_dt_machine_init(void)  

    127 {  

    128         …  

    149  

    150         if (of_machine_is_compatible("samsung,exynos5250"))  

    151                 of_platform_populate(NULL, of_default_bus_match_table,  

    152                                      exynos5250_auxdata_lookup, NULL);  

    153         else if (of_machine_is_compatible("samsung,exynos5440"))  

    154                 of_platform_populate(NULL, of_default_bus_match_table,  

    155                                      exynos5440_auxdata_lookup, NULL);  

    156 }  



使用Device Tree后,驅動需要與.dts中描述的設備結點進行匹配,從而引發驅動的probe()函數執行。對于platform_driver而言,需要添加一個OF匹配表,如前文的.dts文件的"acme,a1234-i2c-bus"兼容I2C控制器結點的OF匹配表可以是:

[cpp] view plaincopy



    436 static const struct of_device_id a1234_i2c_of_match[] = {  

    437         { .compatible = "acme,a1234-i2c-bus ", },  

    438         {},  

    439 };  

    440 MODULE_DEVICE_TABLE(of, a1234_i2c_of_match);  

    441  

    442 static struct platform_driver i2c_a1234_driver = {  

    443         .driver = {  

    444                 .name = "a1234-i2c-bus ",  

    445                 .owner = THIS_MODULE,  

    449                 .of_match_table = a1234_i2c_of_match,  

    450         },  

    451         .probe = i2c_a1234_probe,  

    452         .remove = i2c_a1234_remove,  

    453 };  

    454 module_platform_driver(i2c_a1234_driver);  



對于I2C和SPI從設備而言,同樣也可以透過of_match_table添加匹配的.dts中的相關結點的compatible屬性,如sound/soc/codecs/wm8753.c中的:

[cpp] view plaincopy



    1533 static const struct of_device_id wm8753_of_match[] = {  

    1534         { .compatible = "wlf,wm8753", },  

    1535         { }  

    1536 };  

    1537 MODULE_DEVICE_TABLE(of, wm8753_of_match);  

    1587 static struct spi_driver wm8753_spi_driver = {  

    1588         .driver = {  

    1589                 .name   = "wm8753",  

    1590                 .owner  = THIS_MODULE,  

    1591                 .of_match_table = wm8753_of_match,  

    1592         },  

    1593         .probe          = wm8753_spi_probe,  

    1594         .remove         = wm8753_spi_remove,  

    1595 };  

    1640 static struct i2c_driver wm8753_i2c_driver = {  

    1641         .driver = {  

    1642                 .name = "wm8753",  

    1643                 .owner = THIS_MODULE,  

    1644                 .of_match_table = wm8753_of_match,  

    1645         },  

    1646         .probe =    wm8753_i2c_probe,  

    1647         .remove =   wm8753_i2c_remove,  

    1648         .id_table = wm8753_i2c_id,  

    1649 };  



不過這邊有一點需要提醒的是,I2C和SPI外設驅動和Device Tree中設備結點的compatible 屬性還有一種弱式匹配方法,就是別名匹配。compatible 屬性的組織形式為<manufacturer>,<model>,別名其實就是去掉compatible
屬性中逗號前的manufacturer前綴。關于這一點,可查看drivers/spi/spi.c的源代碼,函數spi_match_device()暴露了更多的細節,如果別名出現在設備spi_driver的id_table里面,或者別名與spi_driver的name字段相同,SPI設備和驅動都可以匹配上:


[cpp] view plaincopy



    90 static int spi_match_device(struct device *dev, struct device_driver *drv)  

    91 {  

    92         const struct spi_device *spi = to_spi_device(dev);  

    93         const struct spi_driver *sdrv = to_spi_driver(drv);  

    94  

    95         /* Attempt an OF style match */  

    96         if (of_driver_match_device(dev, drv))  

    97                 return 1;  

    98  

    99         /* Then try ACPI */  

    100         if (acpi_driver_match_device(dev, drv))  

    101                 return 1;  

    102  

    103         if (sdrv->id_table)  

    104                 return !!spi_match_id(sdrv->id_table, spi);  

    105  

    106         return strcmp(spi->modalias, drv->name) == 0;  

    107 }  

    71 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,  

    72                                                 const struct spi_device *sdev)  

    73 {  

    74         while (id->name[0]) {  

    75                 if (!strcmp(sdev->modalias, id->name))  

    76                         return id;  

    77                 id++;  

    78         }  

    79         return NULL;  

    80 }  



4.    常用OF API



在Linux的BSP和驅動代碼中,還經常會使用到Linux中一組Device Tree的API,這些API通常被冠以of_前綴,它們的實現代碼位于內核的drivers/of目錄。這些常用的API包括:



int of_device_is_compatible(const struct device_node *device,const char *compat);



判斷設備結點的compatible 屬性是否包含compat指定的字符串。當一個驅動支持2個或多個設備的時候,這些不同.dts文件中設備的compatible 屬性都會進入驅動 OF匹配表。因此驅動可以透過Bootloader傳遞給內核的Device
Tree中的真正結點的compatible 屬性以確定究竟是哪一種設備,從而根據不同的設備類型進行不同的處理。如drivers/pinctrl/pinctrl-sirf.c即兼容于"sirf,prima2-pinctrl",又兼容于"sirf,prima2-pinctrl",在驅動中就有相應分支處理:


[cpp] view plaincopy



    1682 if (of_device_is_compatible(np, "sirf,marco-pinctrl"))  

    1683      is_marco = 1;  



struct device_node *of_find_compatible_node(struct device_node *from,



         const char *type, const char *compatible);



根據compatible屬性,獲得設備結點。遍歷Device Tree中所有的設備結點,看看哪個結點的類型、compatible屬性與本函數的輸入參數匹配,大多數情況下,from、type為NULL。



int of_property_read_u8_array(const struct device_node *np,



                     const char *propname, u8 *out_values, size_t sz);



int of_property_read_u16_array(const struct device_node *np,



                      const char *propname, u16 *out_values, size_t sz);



int of_property_read_u32_array(const struct device_node *np,



                      const char *propname, u32 *out_values, size_t sz);



int of_property_read_u64(const struct device_node *np, const char



*propname, u64 *out_value);



讀取設備結點np的屬性名為propname,類型為8、16、32、64位整型數組的屬性。對于32位處理器來講,最常用的是of_property_read_u32_array()。如在arch/arm/mm/cache-l2x0.c中,透過如下語句讀取L2
cache的"arm,data-latency"屬性:


[cpp] view plaincopy



    534         of_property_read_u32_array(np, "arm,data-latency",  

    535                                    data, ARRAY_SIZE(data));  



在arch/arm/boot/dts/vexpress-v2p-ca9.dts中,含有"arm,data-latency"屬性的L2 cache結點如下:

[cpp] view plaincopy



    137         L2: [email protected] {  

    138                 compatible = "arm,pl310-cache";  

    139                 reg = <0x1e00a000 0x1000>;  

    140                 interrupts = <0 43 4>;  

    141                 cache-level = <2>;  

    142                 arm,data-latency = <1 1 1>;  

    143                 arm,tag-latency = <1 1 1>;  

    144         }  





有些情況下,整形屬性的長度可能為1,于是內核為了方便調用者,又在上述API的基礎上封裝出了更加簡單的讀單一整形屬性的API,它們為int of_property_read_u8()、of_property_read_u16()等,實現于include/linux/of.h:

[cpp] view plaincopy



    513 static inline int of_property_read_u8(const struct device_node *np,  

    514                                        const char *propname,  

    515                                        u8 *out_value)  

    516 {  

    517         return of_property_read_u8_array(np, propname, out_value, 1);  

    518 }  

    519  

    520 static inline int of_property_read_u16(const struct device_node *np,  

    521                                        const char *propname,  

    522                                        u16 *out_value)  

    523 {  

    524         return of_property_read_u16_array(np, propname, out_value, 1);  

    525 }  

    526  

    527 static inline int of_property_read_u32(const struct device_node *np,  

    528                                        const char *propname,  

    529                                        u32 *out_value)  

    530 {  

    531         return of_property_read_u32_array(np, propname, out_value, 1);  

    532 }  





int of_property_read_string(struct device_node *np, const char



*propname, const char **out_string);



int of_property_read_string_index(struct device_node *np, const char



    *propname, int index, const char **output);



前者讀取字符串屬性,后者讀取字符串數組屬性中的第index個字符串。如drivers/clk/clk.c中的of_clk_get_parent_name()透過of_property_read_string_index()遍歷clkspec結點的所有"clock-output-names"字符串數組屬性。

[cpp] view plaincopy



    1759 const char *of_clk_get_parent_name(struct device_node *np, int index)  

    1760 {  

    1761         struct of_phandle_args clkspec;  

    1762         const char *clk_name;  

    1763         int rc;  

    1764  

    1765         if (index < 0)  

    1766                 return NULL;  

    1767  

    1768         rc = of_parse_phandle_with_args(np, "clocks", "#clock-cells", index,  

    1769                                         &clkspec);  

    1770         if (rc)  

    1771                 return NULL;  

    1772  

    1773         if (of_property_read_string_index(clkspec.np, "clock-output-names",  

    1774                                   clkspec.args_count ? clkspec.args[0] : 0,  

    1775                                           &clk_name) < 0)  

    1776                 clk_name = clkspec.np->name;  

    1777  

    1778         of_node_put(clkspec.np);  

    1779         return clk_name;  

    1780 }  

    1781 EXPORT_SYMBOL_GPL(of_clk_get_parent_name);  





static inline bool of_property_read_bool(const struct device_node *np,



                                         const char *propname);



如果設備結點np含有propname屬性,則返回true,否則返回false。一般用于檢查空屬性是否存在。



void __iomem *of_iomap(struct device_node *node, int index);



通過設備結點直接進行設備內存區間的 ioremap(),index是內存段的索引。若設備結點的reg屬性有多段,可通過index標示要ioremap的是哪一段,只有1段的情況,index為0。采用Device
Tree后,大量的設備驅動通過of_iomap()進行映射,而不再通過傳統的ioremap。




unsigned int irq_of_parse_and_map(struct device_node *dev, int index);



透過Device Tree或者設備的中斷號,實際上是從.dts中的interrupts屬性解析出中斷號。若設備使用了多個中斷,index指定中斷的索引號。



還有一些OF API,這里不一一列舉,具體可參考include/linux/of.h頭文件。

5.    總結



ARM社區一貫充斥的大量垃圾代碼導致Linus盛怒,因此社區在2011年到2012年進行了大量的工作。ARM Linux開始圍繞Device Tree展開,Device Tree有自己的獨立的語法,它的源文件為.dts,編譯后得到.dtb,Bootloader在引導Linux內核的時候會將.dtb地址告知內核。之后內核會展開Device
Tree并創建和注冊相關的設備,因此arch/arm/mach-xxx和arch/arm/plat-xxx中大量的用于注冊platform、I2C、SPI板級信息的代碼被刪除,而驅動也以新的方式和.dts中定義的設備結點進行匹配。


[plain] view plaincopy

七星彩走势图2元网官网